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ABSTRACT 

 
The December 26, 2004 tsunami left its imprints along the southern coast of India especially 

the coastal areas of Manakudy in Kanyakumari district of Tamil Nadu. In the study area - Manakudy 
estuary - the post-tsunami sediment texture is predominantly coarser as inferred from  textural 
analysis.  Granulometric analysis indicates a shift of well-sorted, coarse skewed and platykurtic nature 
during the pre-tsunami season, to moderately sorted, fine skewed and leptokurtic behavior, after the 
tsunami. Violent hydrodynamic conditions have prevailed during the post-tsunami deposition of 
sediments. The unimodal nature of the post-tsunami sediments as distinct from the bimodal pre-
tsunami sediments is reflected from the frequency curves. The CM diagram and the log probability 
curves confirm these observations.  
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1. INTRODUCTION 
 

Sedimentological analyses of undisturbed surface sediments often provide a useful tool to 
unravel the mechanism of complex dynamic systems where transition between terrestrial and marine 
environment occurs. Granulometric analyses of unconsolidated sediments serve as an indicator of the 
depositional environment. Detailed knowledge of these processes is a prerequisite for the 
reconstruction of paleo-environmental changes from the sedimentary rock. The rate of sediment 
transport and accumulation in coastal environments are affected by tidal currents and river discharges 
(Hall et al., 1987). The sedimentary record is an integrated record of the pollution and also accounts 
for the process of diagenetic remobilization (Ridgeway and Price, 1987). Generally, during the 
monsoon season and heavy flooding, the accumulation rate of sediments is very high. However, 
during the post-monsoon season resuspension of minerals occurs because of shallow water depth and 
prevailing air currents (Jing Zhang et al., 1988). Texturally, the river sediments are sandy silt and are 
coarse grained, whereas in an estuary the sediments are clayey silt and fine grained (Muraleedharan 
Nair and Ramachandran, 2002) - though at the head of the estuary, sand is dominant. Grain size 
parameters such as mean size (MZ) and standard deviation (SD) reflect the energy conditions of the 
depositional environment (Visher, 1969; Sly Thomas and Pehetier, 1982) as the difference in size 
distribution is mainly due to variation in wave energy reaching the point of sampling and extent of 
turbulence affecting the environment. The coarser riverine sediments are moderately sorted while the 
finer estuarine sediments are poorly sorted (Mohan, 1995). Negative skewness (SK) is characteristic of 
coastal environments that are undergoing erosion or non-deposition, while positive skewness 
characterizes the areas of deposition. Also, positive skewed sediments  indicate an abundance of fine-
grained sediments relative to the mean size (Datta and Subramanian, 1997). The variation in the 
kurtosis is a reflection of transport processes/depositional mechanisms of sediments (Baruah et al., 
1997; Prabhakara Rao et al., 2001; Malvarez et al., 2001). However, during a rare geological event 
such as a tsunami, unpredictable changes are bound to occur in the granulometric characteristics. 

 
Destructive cyclones are much more frequent in the Indian Ocean than tsunamis.   However, 

the December 26, 2004 Sumatra earthquake, with a magnitude up to Mw9.3 generated the most 
destructive tsunami in recorded history, in terms of loss of life and property damage. The Manakudy 
Estuary is  on the west coast of India and not in the direct path of the tsunami. Yet, the strength of the 
tsunami in this area was so enormous that a massive concrete bridge was uprooted and carried several 
hundred meters away. The impact in the estuary was rated as high compared to the low and medium 
categories assigned for most of the east and west coastal zones of India  (Chandrasekhar et al., 2006). 
The sand ridges in the  area, are indicative of a dynamic coast transgression and regression in the 
geological past. Bahlburg and Weiss (2007) reported that the sediments that were deposited by the 
tsunami along the coasts of Tamil Nadu were predominantly medium sands (350-700 µm) with a 
maximum thickness of 0.3m. In view of these observations, it was imperative to evaluate the 
dynamics of the tsunami’s impact on the West coast of India, with further study of the grain size 
distribution in the Manakudy Estuary.  
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2. MATERIALS AND METHODS 
 

The study area and sampling locations are depicted in Fig. 1. In August 2004 (pre-tsunami 
period) and in early January 2005 (post-tsunami period), eighty sediment samples were collected from 
40 different locations using grab samplers. The sediment samples were homogenized and air- dried at 
60o C to a constant weight. After the removal of carbonates, organic matter and possible iron oxides 
by wet sieving, the granulometric composition was determined using the pipette method (Folk, 1974; 
Gee and Bauder, 1986). Then, the values were fed into the ternary diagram (Shephard, 1954) and 
textural classifications were made. The grains were sieved in a Ro-Top machine with ASTM sieves 
from +45 to +230 mesh sizes so as to maintain quarter Ф interval and the various statistical 
parameters were evaluated.  
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3. RESULTS AND DISCUSSION 
 

Most of the sediments that were measured fall into four distinct textural classes: sand, silty 
sand, clayey sand and sand silt clay, as illustrated in the triangular diagram (Fig. 2). The silty sand 
alone constitutes nearly 50% of the samples collected before and after tsunami. The high silt content 
in general, could be attributed to flocculation, followed by fine colloidal aggregates settling during 
estuarine mixing in the post-tsunami sediments (Kranck, 1975).  

 

 
 
According to Morten Pejrup (1988), a constant clay/mud ratio can explain different degree of 

flocculation of the suspended sediment, which in turn is strongly influenced by turbulence of the  
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estuary. The line of constant clay content can be used for a simple description of the hydrodynamic 
condition during sedimentation. The decreasing clay content from sections I to IV in the diagram 
(Fig.3) would indicate increasingly violent hydrodynamic conditions.  High clay content in the mud 
fraction, would represent a quiet hydrodynamic condition. Over one third of the pre-tsunami 
sediments have populated segments I and II, indicating high clay content and relatively calm 
hydrodynamics. On the other hand, most of the post-tsunami sediments are confined to lower clay 
segments III and IV, indicating more violent hydrodynamic conditions during sedimentation.  

 

 
 
The grain size statistics are used to distinguish between high and moderate energy    

environments. The grain size distribution is controlled by the physical transportation of sediment,  
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including sediment aggregation and deposition, gravitational circulation, tidal pumping and tidal 
trapping (Wai et al., 2004). Grain size distribution of estuarine sediments has unraveled the existence 
of statistical relationships between the different size characteristics such as mean size, standard 
deviation, skewness and kurtosis. All the statistical parameters have been arrived at for all samples 
using the graphical method in which the cumulative weight percentage vs. quarter Ф values are 
plotted on a log probability chart to give the percentiles, followed by calculations (Table 1).  
 

Mean size is an index to measure the nature as well as the depositional environment of the 
sediments. It represents the average size of the sediments influenced by the supply, transporting 
medium and the energy conditions of the depositing environment. The mean grain size (Ф) ranges 
from 0.98-2.37 in the pre-tsunami samples and 0.87- 2.07 for post-tsunami sediments. The mean 
diameter also indicates that most of the sediments in the pre-tsunami consist of very fine sand. The 
mean size indicates that the fine sands were deposited at a moderately low energy conditions. The 
decrease in size for the post-tsunami sediments may be due to a variation in wave energy reaching and 
the extent of turbulence affecting the environment due to the tsunami waves. The variation in Ø, 
therefore, reveals the different energy conditions which lead to the deposition of these kinds of 
sediments.  

 
Standard deviation measures the sorting of sediments and indicates the fluctuations in the 

kinetic energy or velocity conditions of the depositional agent. The standard deviation ranges from 
0.32 to 0.96Ф for the pre-tsunami and 0.56 to 1.04 Ф for the post-tsunami sediments respectively. The 
pre-tsunami sediments fall into the well sorted to moderately well sorted region, while most of the 
post-tsunami sediments are in the moderately sorted region. This sorting nature of the sediments may 
be due to the intermixing and influx of the sediments from sea as well as the river. The presence of 
fine sand and the well-sorted nature suggests effective wave action to scour the sediments during the 
break of tsunami waves.  

 
Skewness measures the asymmetry of the frequency distribution. The values of skewness in 

the Manakudy estuary range between -0.51 and + 0.4 for pre-tsunami and -0.04 to +0.37 for post-
tsunami sediments indicating that the normal size distribution is influenced by finer sizes (fine 
skewed). Skewness is positive (fine skewed) in the post-tsunami, whereas both positive as well as 
negative (coarse skewed) in the pre-tsunami season. The symmetry of the samples varies from fine 
skewed to coarse skewed nature. The fine skewed sediments generally imply the introduction of fine 
material or removal of coarse fraction or winnowing of sediments (Duane, 1964). The post-tsunami 
sediments have been deposited under high energy conditions as indicated by the positive skewness 
(fine skewed) compared to the pre-tsunami samples which are coarse skewed at the tail of the estuary, 
an indication of deposition under calm conditions. 

 
Kurtosis measures the ratio between the sorting in the tails (leptokurtic) of the distribution and 

sorting in the central portion (mesokurtic) of the distribution and better sorted than the central portion 
(platykurtic) in the distribution. Kurtosis varies from 0.69-1.47 in the pre-tsunami and 0.77-1.44 in the 
post-tsunami seasons respectively. Most of the pre-tsunami sediments are platykurtic to mesokurtic 
while post-tsunami sediments are leptokurtic to mesokurtic. Jaquet and Vernet (1976) have used  
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Table 1. Grain Size Parameters      
         

 Pre-tsunami   Post-tsunami  Sample No. 
Mz SD Sk KG Mz SD Sk KG 

1 2.35 0.78 -0.21 0.94 1.31 0.62 0.03 0.99 
2 2.37 0.81 -0.19 0.94 1.80 0.79 0.33 1.34 
3 2.33 0.95 -0.27 1.06 1.02 0.87 -0.04 1.23 
4 1.68 0.40 -0.05 1.23 1.14 0.80 0.30 1.10 
5 1.62 0.92 0.09 0.905 1.66 0.95 0.15 0.93 
6 1.77 0.91 -0.16 0.86 1.89 0.92 0.19 0.81 
7 1.21 0.84 -0.18 0.99 1.14 1.04 0.02 1.04 
8 1.67 0.35 0.03 1.22 1.45 0.81 0.11 1.36 
9 2.27 0.66 -0.29 0.84 1.38 0.77 0.13 1.07 

10 2.25 0.72 -0.51 0.77 1.12 0.83 0.07 1.44 
11 1.67 0.76 -0.15 0.98 0.98 0.70 -0.01 1.04 
12 1.70 0.78 -0.10 0.72 1.40 0.65 0.10 1.22 
13 1.86 0.70 -0.13 0.91 1.41 0.66 0.08 1.42 
14 2.37 0.60 -0.41 0.90 1.13 0.87 0.21 1.04 
15 1.88 0.76 -0.13 0.99 1.41 0.67 0.08 1.14 
16 2.14 0.69 0.21 0.86 1.57 0.69 0.18 1.33 
17 1.93 0.76 -0.03 0.88 1.76 0.75 0.11 0.92 
18 1.90 0.82 0.22 0.87 0.87 0.99 0.11 1.15 
19 1.55 0.51 -0.03 1.10 1.22 0.89 0.26 1.10 
20 1.80 0.81 0.16 1.01 1.12 1.00 0.06 0.85 
21 1.85 0.64 0.26 1.08 1.18 0.94 -0.03 1.03 
22 1.82 0.72 0.15 0.99 1.28 0.52 0.10 1.10 
23 1.97 0.70 0.34 0.88 1.23 0.64 0.08 1.13 
24 1.72 0.54 0.29 1.43 1.69 0.73 0.20 1.30 
25 1.90 0.57 0.35 1.03 1.39 0.64 0.11 1.26 
26 1.63 0.44 -0.13 1.41 1.57 0.79 0.19 1.40 
27 0.98 0.86 -0.09 0.69 1.36 0.68 0.09 1.20 
28 1.78 0.32 0.20 1.47 1.16 0.60 0.07 1.11 
29 2.13 0.73 0.15 1.05 1.32 0.56 0.04 1.08 
30 1.62 0.61 0.28 1.30 1.23 0.80 -0.03 1.16 
31 2.08 0.77 0.25 0.90 1.33 0.71 0.14 1.38 
32 1.91 0.73 0.40 0.79 2.07 0.99 0.14 0.77 
33 2.14 0.82 0.29 0.78 1.30 0.88 0.10 1.10 
34 1.88 0.77 0.22 0.81 2.00 0.99 0.18 0.85 
35 2.00 0.61 0.28 0.84 1.73 0.89 0.24 1.23 
36 2.03 0.69 0.13 0.82 1.53 0.82 0.19 1.20 
37 2.04 0.66 0.25 0.92 1.70 0.93 0.37 0.93 
38 2.26 0.65 0.10 0.92 1.33 0.65 0.14 1.34 
39 2.06 0.44 0.19 0.97 1.54 0.82 0.19 1.26 
40 2.06 0.96 0.26 0.83 1.32 0.82 0.02 1.09 

Mz-Mean Size, SD-Standard Deviation, Sk-Skewness, KG-Kurtosis 
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graphic kurtosis to recognize the characters of population, as strongly platykurtic curves are found to 
be bimodal with sub equal amounts of the two modes. The frequency distribution curves of the pre-
tsunami sediments have confirmed the bimodal-platykurtic behavior of the sediments and the post-
tsunami unimodal sediments are mesokurtic to leptokurtic (Fig.4).  
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The modal behavior is further confirmed by the frequency curves of Folk (1974), as depicted 

in Fig. 5.  
 
 

 
 
The bivariate plots Fig. 6 (a-f) also confirm the above observations, as seen from the distinct 

different behavior of post-tsunami sediments.  
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The C=M pattern offers a platform for deducing transportation modes of sediments. The area of a 
complete C=M pattern may be divided into sections which are related to sedimentary environments. 
The location of the plotted points for a single deposit within the area of a complete C=M pattern 
indicates the probable conditions of transport before deposition. In the pre-tsunami and post-tsunami 
patterns for the sediments of Manakudy estuary (Fig.7) the OPQ segment is populated indicating 
mostly the estuarine characteristics of the sediments (Ramanathan et al.2009). Some of the sediments 
are found in the high turbulent discriminate OP, and the less turbulent discriminate PQ, are indications 
of rolling of the sediments with suspension as well as suspension with rolling. Most of the sediments 
during the pre-tsunami season fall outside OPQ parallel to C=M between 200 and 400 microns 
indicate good sorting as established elsewhere. The post-tsunami sediments have two distinct 
segments NO and OP strongly populated, which is an indication that the majority of the sediments are 
transported by rolling and a small part by rolling and suspension. Some of the post-tsunami sediments 
are falling outside NOP segments shows a considerable influence by the marine currents under post-
tsunami conditions. Moreover, C is above 1000 microns (1000-3000 microns) for most of the post-
tsunami sediments infer violent hydrodynamic condition prevalent due to tsunami tidal waves, leading 
to coarser sandy deposition.  
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The log probability distribution curves have been used to recognize the different populations (Visher, 
1969) suspension, saltation and surface creep (traction). The grain size pattern of the log probability 
curves (Fig. 8) shows at least three segments each defined by four control points (Weltje and Prins, 
2007). Each population is truncated and joined with the next population to form a single distribution, 
as grain size distributions do not follow a simple log normal law but are composed of several log-
normal populations with different mean and standard deviation. Hence each transportation process is 
reflected in a single grain size distribution plot with different percentage of population, degree of 
mixing, size range and degree of sorting providing insight into the currents, waves, rate of deposition 
and provenance.  
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       The high saltation population (>50%) for the pre-tsunami grains reveals calm conditions 
prevailing during pre-tsunami period. On the other hand for post-tsunami grains, saltation population 
is low (<30%) which is indicative of violent hydrodynamic conditions. The position of the truncation 
point may also reflect the turbulent energy conditions at the depositional interface. The post-tsunami 
sediments have a very fine truncation point for the saltation population (3.5-3.6) revealing violent 
energy conditions. Also strong mixing of the suspension and saltation population indicates highly 
variable energy conditions. Hence it is established that the sediment transport occurs from the 
estuarine mouth due to winnowing action of the oscillatory waves followed by tidal action, which is 
an intermediate characteristic between those of fluvial and beach sediments during pre-tsunami 
season. The deposition of post-tsunami sediments is due to the erosion and transportation of sandy 
sediments from the backwash of the tsunami wave. 
 
4. CONCLUSIONS 
 

The pre-tsunami sediments are bimodal and fine (silty sand) compared to the unimodal and 
coarser (sand) behavior of the post-tsunami deposits. The post-tsunami grains bear marine 
characteristics under violent hydrodynamics, whereas the pre-tsunami grains are mostly fluvial, 
deposited under low energy conditions. The tsunami signatures are witnessed in the post-tsunami 
texture of the sediments as established from the statistical parameters of the grains. Their deposition 
under high-energy conditions is further evident from the C=M pattern and Vishers diagram. 
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