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ABSTRACT 
The need to review the impact of tsunamis on the island of Bali and Indonesia as a whole is real and 
warranted. There are in excess 17,500 island, 275million people and multiple Tsunami sources. The 
last comprehensive assessment of tsunami risk and hazard for parts of Bali and Padang was 
completed in 2010 with data since identified as unsuitable in accuracy. Several problems are 
identified to improve tsunami hazard mapping in Indonesia, such as the role of input data accuracy 
consistency and density of data, a better description of hazard, and the sensitivity of hazard to input 
data quality. The research objectives include reviewing multiple data sets, undertaking tsunami 
impact modeling, and developing a data quality metric. Further there is consideration of a future 
framework approach to enable a nationwide roll-out of modelling on the basis the metric identifying 
the availability of improved quality of data. Strongly related to this is the ongoing development and 
review of the Indonesian BATNAS and DEMNAS data. It is recommended that version metadata 
be developed for the evolving data sets in time. Noting that ongoing improvement in this data is a 
strong candidate to trigger the need to update Tsunami Modelling and Mapping in Indonesia, either 
as a whole, or in specific areas as it becomes available. 
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1. INTRODUCTION 

Indonesia is the worlds largest archipelago with over 17,500 islands (see in Figure 1 which 
is the 14th largest country in the world covering 1,904,569 square kilometres with 275 million 
people. Making it the 4th most populous country. It is one of the most tectonic seismically active 
countries in the world where the Indo-Australian Plate and the Pacific Plate and many sub-plates 
are interacting with the Eurasian plate. The 2004 Indian Ocean earthquake and 2006 Yogyakarta 
earthquake were two events triggering tsunami. In 2019, 15.4 million tourist visited Indonesian 
contributing around US$9.8 billion to GDP in 2020 making an interruption due to tsunami 
potentially very expensive to the entire community. 

From this statement it is clear that Indonesia has significant complexity related to Tsunami 
impact not shared by any other nation. It has a huge number of islands (largest archipeligo in the 
world), a very large population, strong contribution to its economy through tourism, and sits on one 
of the most seismically active zones in the world. The length of coastline is estimated to be around 
108,000km (second longest in the world) (Pandjaitan, 2020). The 2004 Tsunami and the 2011 
Fukashima Tsunami have led to a focused, global research effort on Tsunami’s and their impact, 
this thesis will add to this in a number of ways. 

The last comprehensive assessment of Tsunami Risk and hazard undertaken at least for parts 
of Bali and Padang was conducted in 2009/2010 through GITEWS (GITEWS{DLR / GTZ}, 2010). 
“Tsunami Hazard Maps for Bali” incorporating; 

- ‘Multi-scenario Tsunami Hazard Maps for Bali, 1:100,000’, and  
- ‘Multi-scenario Tsunami Hazard Maps for Southern Bali, 1:25,000’,  
with zoning based on wave height at coast (in line with the InaTEWS warning levels). This 

work was completed using Mike21 and coarse STRM (30m cell) data. This data is known to be 
relatively poor (Griffin etal., 2015). The earlier work (Kjell Karlsrud 2009), relied on models using 
a 100m grid cell using STRM and ASTER terrain data. Of some concern is the ongoing reliance 
and use by third parties on this mapping product (Sagala etal., 2016) to drive Disaster preparedness. 
Other attempts to model portions of Indonesia exist but are not comprehensive. 

 

Figure 1. Indonesia Archipelago and Location of Bali 
 
Other attempts to model portions of Indonesia exist but are not comprehensive. (Prerna etal, 

2014) undertook tsunami analysis of the Andaman Islands using the STRM data set. 
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 (Fatmawati etal., 2019) undertook run up assessments on a portion of the southern coast of 
Bali, but it is unknown what terrain data was used for this exercise. (Valentra Etal, 2022) undertook 
a tsunami impact analysis using higher resolution data in the Lombok Strait. In regard to the 
inclusion of Buildings research has shown a very real impact on flow behavior and resulting hazard 
(Murray etal., 2021). 

In relation to input data accuracy,  (Griffin etal., 2015) provide an assessment for the 
Tsunami Impact on Padang. However, the notion of a framework to control and assess the accuracy 
of the input is not directly discussed. It is however significant and relevant to note their findings and 
conclusions paraphrasing here: 

 
“The results presented in this paper clearly demonstrate that the present generation of 

freely available global DEMs (i.e., ASTER and SRTM90) are not sufficiently accurate to simulate 
tsunami inundation with confidence. 

Tsunami inundation models developed using DEMs that are currently freely available at a 
global scale (i.e., ASTER and SRTM) have the potential to dangerously underestimate the 
inundation extent. These datasets should not be used to assess tsunami inundation zones using 
hydrodynamic models.” 

 
Finally, globally the methods to describe a hazard from Tsunami or indeed any flowing 

water has not evolved from initial concepts developed in the 1970’s. Whilst technology to provide 
analysis has improved such that there are now numerous tools that provide highly accurate 
simulation capacity, the core method to define the resulting hazard has remained unchanged and not 
open to new inputs from the new analysis methods. Hazard has and is defined primarily on 
momentum or the Velocity times Depth product. Although several researchers have tried to show 
methods of plausibly improving this (Trieste, 1988) , (VanDrie, 2008)  to date no alternate methods 
are widely adopted beyond the original 1970’s formulation of hazard. This work will touch on 
approaches to hazard, and the notion of using a framework to enable a systematic and consistent 
approach to model input assessment, model setup and production of output for mapping. 
 
 
2. METHODS 

 

The framework of thinking in this study is based on the notion that the accuracy of results from 
models is directly impacted by the accuracy and quality of input data. The old saying; “Rubbish-In, 
Rubbish-Out” is very true. However, the objective is to try to gain a metric, a notion of 
measurement of data accuracy and the influence on resulting output. This requires assessment of 
input data sets, running of multiple models over the same area utilizing each of the data sets and  
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finally reviewing results and the variation in results as a result of only input data differences. Refer 
to Figure 2 for an outline of the method and approach. 
      The research concept in this work is to acquire multiple data sets for two project sites. One set 
of multiple data sources for Ocean Floor bathymetry, one set of above Ocean terrain data. The data 
sets will be ranked in accuracy based on how the data has been collected. A physically  measured 
(surveyed) data set will be deemed most accurate. For bathymetry single beam sonar is deemed 
most accurate on the basis that it has been manually acquired. The survey and sonar will become 
the point of truth data for comparisons. For the additional data sets, a comparison will be 
undertaken to identify how much error is in the data compared to the point of truth data. The 
approach here is to utilize two sites with multiple data sets that describe the terrain and bathymetry 
at various levels of accuracy. Based on the different data sets a tsunami model will be run for each 
combination of terrain+bathymetry.  
      The resulting inundation and hazard characteristics on the shore attacked by the tsunami will be 
compared for each of the models. The comparison of model results from the bathymetric data sets 
will provide an indication of the sensitivity of hazard based on the drowned terrain changes. The 
comparison of the dry terrain results for each of the bathymetric data sets, will indicate that a 
change in offshore data influence the on land hazard. Similarly the comparison of the multiple dry 
terrain data sets, keeping the bathymetry static will indicate the sensitivity of hazard definition of 
only the terrain change. The initial steps involve gathering the data sets. There are two distinct 
different types of data, point data, and surface data (grid). As such a comparison must be based on 
values located precisely at the points as well as over the 2 dimensional extent of the surfaces created 
by the points, when compared to the grid data sets.  
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Figure 2. Process Steps 

 
The completion of the input data analysis will attempt to identify a “Quality Metric”.  From each of 
the Terrain and Bathymetric data set combinations, a Tsunami Model will be set up apply the exact 
boundary conditions, such that the only variance in the model is the terrain component of either 
Bathymetric data or Terrain data. Once the models have all been run results will be extracted at a 
nominated number of GAUGE locations. The results will include the full time series of the analysis. 
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      ANUGA HYDRO (Zoppou, Roberts, 1999), (Nielsen, Roberts, 2005) is used to model the 
inundation resulting from a large tsunami wave as it has been shown to replicate extreme flows very 
well (Mungkasi, van Drie, Roberts, 2013), (Wuppukondur, Baldock, 2020). The focus is not on the 
details of the type of wave, or replicating a certain event. Instead a simple 10m increase in water 
height is applied at the boundary which will drive the model to resolve flow characteristics. The 
focus again is to account for input data difference in the resulting description of hazard. ANUGA 
has been selected for this task for a number of reasons: 
- It uses a flexibly sized triangular mesh (making it easy to produce high levels of detail only where 
required) (Schlurmann, Kongko, Goseberg, Natawidjaja, Sieh, 2010), which may be automated 
(Wright, Passalacqua, Simard, Jones, 2022) 
- It is extremely stable in the most extreme flow conditions 
- It is proven to be a very good model to replicate tsunami inundation 
- It is not highly (or overly) sensitive to changes in surface roughness (Cárdenas, Catalán, 2022), 
(Van Drie, Milevski, Simon,2011). 
- It has a number of very useful built-in functions to make extraction of results very easy 
- Can run in Parallel (Roberts, Stals, Nielsen, 2007)  
The measure of difference can be achieved in a number of ways: 
- The elevation at each point directly compared 
- The differences measured based on the surfaces created or available 
- Using statistical functions such as RMSE, MAE, MBE etc. 
 
      The analysis to be undertaken is on the inundation data sets from the ANUGA HYDRO Models 
described. The data sets include water level (Stage), momentum of the moving water, bed Shear, 
Depth, Velocity, and Froude number. Note that, Tsunami really are or become debris flows 
(Synolakis, Bernard; 2006) and this may be a future trigger to re-model when models can be 
adequately be adapted to account for debris flows. Models may often contain errors (VanDrie, 
Ghetti, Milevski, 2018) which may also trigger the need for re-modelling. 
      The focus of this work is in understanding the influence of data quality (Schlurmann etal., 2010) 
or of error in input data, on the outcome of error in the results of a model to predict hazard. It is 
usual to take several ERROR METRICS or Key Performance Indicators (KPI’s) into account in 
order to assess findings. Measuring forecast accuracy (or error) is not an easy task as there is no 
one-size-fits-all indicator. Only experimentation will show you what Key Performance Indicator 
(KPI) is best. The first distinction required is the difference between the precision of a forecast and 
its bias. Bias represents the historical average error. That is, will forecasts be, on average, too high 
or too low. This will give you the overall direction of the error. Precision measures how much 
spread is between the forecast and the actual value. The precision of a forecast gives an idea of the 
magnitude of the errors but not their overall direction.  Ideally a model  

Forecast KPI or Error. Error simply put is the difference in a forecast and known target. Note that 
if the forecast overshoots the target with this definition, the error will be. positive. If the forecast 
undershoots the demand, then the error will be negative. The bias has both, is precise and is 
unbiased is defined as the average error: - As a positive error on one item can offset a negative error 
on another item, a forecast model can achieve very low bias 
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and not be precise at the same time. Obviously, the bias alone won’t be enough to evaluate the 
forecast precision. But a highly biased forecast is already an indication that something is wrong in 
the model. The Mean Absolute Percentage Error (MAPE) is one of the most commonly used KPIs 
to measure forecast accuracy. MAPE is the sum of the individual absolute errors divided by the 
target value(s). It is the average of the percentage errors. MAPE is not a good forecast KPI as it is a 
poor-accuracy indicator. MAPE divides each error individually by the target, so it is skewed: high 
errors during low-target (numbers) will significantly impact MAPE.    

      Due to this, optimizing MAPE will result in a strange forecast that will most likely undershoot the 
target. The Mean Absolute Error (MAE) is a very good KPI to measure forecast accuracy. As the 
name implies, it is the mean of the absolute error. One of the first issues of this KPI is that it is not 
scaled to the average target value. If MAE is 10 for a particular item, you cannot know if this is good 
or bad. If your average target is 1000, it is, of course, astonishing. Still, if the average demand is 1, this 
is a very poor accuracy. To solve this, it is common to divide MAE by the average target to get a %. 
The Root Mean Squared Error (RMSE) is a strange KPI but a very helpful one, as we will discuss 
later. It is defined as the square root of the average squared error.  

      Actually, many algorithms (especially for machine learning) are based on the Mean Squared 
Error (MSE), which is directly related to RMSE. Many algorithms use MSE as it is faster to 
compute and easier to manipulate than RMSE. But it is not scaled to the original error (as the error 
is squared), resulting in a KPI that cannot be related to the original target scale. Therefore, it should 
not be used it to evaluate  statistical forecast models. 

On the question of error weighting: 

Compared to MAE, RMSE does not treat each error the same. It gives more importance to 
the most significant errors. That means that one big error is enough to get a very bad RMSE. RMSE 
emphasizes the most significant errors, whereas MAE gives the same importance to each error. 
Generally a forecast of the median will get a good MAE and a forecast of the mean a good RMSE. 
MAPE promotes a very low forecast as it allocates a high weight to forecast errors when the target 
(numbers) is low. Optimization of RMSE will seek to be correct on average. In contrast, MAE's 
optimization will try to be as often overshooting the demand as undershooting the target, which 
means focusing on the target median. Understanding that a significant difference lies in the 
mathematical roots of MAE & RMSE is key. One aims at the median, the second aims at the 
average. The Root Mean Squared Error (RMSE) is one of the two main performance indicators for 
a regression model. It measures the average difference between values predicted by a model and the 
actual values. It provides an estimation of how well the model is able to predict the target value 
(accuracy). Mean Absolute Error (MAE) is one of the most commonly used loss functions for 
regression problems, MAE helps users to formulate learning problems into optimization problems. 
It also serves as an easy-to-understand quantifiable measurement of errors for regression problems. 
In MAE, different errors are not weighted more or less, but the scores increase linearly with the 
increase in errors. The MAE score is measured as the average of the absolute error values. The 
Absolute is a mathematical function that makes a number positive. Mean Bias Error (MBE) is 
primarily used to estimate the average bias in the model and to decide if any steps need to be taken 
to correct the model bias. 
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Mean Bias Error (MBE) captures the average bias (+ve or -ve) in the prediction. R2 is the 
coefficient of determination, and is a measure that provides information about the goodness of fit of 
a model. In the context of regression it is a statistical measure of how well the regression line 
approximates the actual data. This can be used to compare data sets given we know that if the 
elevations were identical in two models the results would also be. In this work the focus in 
understanding error utilizing: { R2, RMSE, MAE and MBE } 

 
3. RESULTS AND DISCUSSION 

3A. Site Locations and Input Data 
The locations (see in Figure 3) were selected purely on the basis of multiple data sets being  
available for either topography (terrain) or bathymetry as follows: 
Site 1, is at Keramas, where there is Sonar data available, GEBCO, BATNAS and Sentinel-2 data. 

Four data sets in total. Site 2, is at Nyanyi, where there is ground survey points are available and 
FABDEM and DEMNAS data. Three data sets in total.       

 
Figure 13.  Location of Research Sites 

 
For site 1 the point of truth data is assumed to be the measured SONAR data. This will be 

compared to the other available data sets being; GEBCO, BATNAS and Sentinel-2. The SONAR 
data has been filtered to below zero (Figure 4) only and contained within a manageable polygon. 
There are 2,211 points over an area of 715,525m2, providing roughly a data density of 1 point per 
323.62m2. Or on average, a data point every 18m in x and y. This data can be used to create a DEM 
as a surface.  
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Figure 14. Site 1 SONAR data points Figure 15. Site 1 SONAR (S) pts 

 
Now that the SONAR data is both a DEM (Figure 6) and a histogram (Figure 5) of point values a 
comparison can be made of the data differences. This can be achieved both by reviewing the DEMS 
of the data surfaces and by reviewing the histograms of point elevation values. For the GEBCO data 
the elevation from the DEM surface is extracted at the same SONAR data points with now the 
ability to plot the histogram and then compare the differences. The same process can be completed 
for any other data set. 

 
Figure 16. Site 1 SONAR (S) as DEM surface 

 
      Extracting the data from GEBCO (Figure 7 & 8) at the same data points provides a method of 
comparison as does the difference in the DEM as surfaces. Subtracting one surface from another 
surface provides the difference over the full extent of data change. 
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Figure 17. Site 1 GEBCO DATA (G-data) Figure 18. Site 1 GEBCO Histogram 
 
      Subtracting the point elevation values (SONAR minus GEBCO) provides a comparison 
histogram (Figure 9). Similar subtracting the surface DEMS (Figure 10) provides a spatial view of 
difference. 
 
 

  
Figure 19. Site 1 Difference Histogram  
(S minus G) 

Figure 10. Site 1 DEM Difference  
(S minus G) 

 
      Similarly with the BATNAS data the data can be extracted at the sonar points (Figure 11 & 12) 
and compared to the DEM surface. The comparison of surfaces provides a very visually rich 
comparison. The comparison of the points as a histogram provides a more specific approach to 
comparison (Figure 13 & 14). 
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Figure 11. Site 1 BATNAS DATA (B-data) Figure 22. Site 1 BATNAS Histogram 
 

  
Figure 2312. Site 1 Difference Histogram  
(S minus B) 

Figure 13. Site 1 DEM Difference  
(S minus B) 

 
      The final data set available is from Sentinel-2 as follows (Figure 15 & 16); 
 

 
 

Figure 14. Site 1Sentinel-2 DATA (S2-data) Figure 26. Site 1 S2 Histogram 
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      Once again comparing to SONAR as points and as a DEM surface (Figure 17 & 18). 

 

 

 

Figure 15. Site 1 Difference Histogram  
(S minus S2) 

Figure 16. Site 1 DEM Difference  
(S minus S2) 

 
      Another approach to determining an overall difference is to compare how the surface volumes 
compare. For example, what is the volume contained above each of the surfaces to a specified 
elevation? This is relatively easy to determine and provides yet another visually rich approach to 
comparing differences (Figure 19). 
      The same approach has been applied to site 2 and its available data sets. 
 
3B. Input Data Metrics 
 
Looking at the input data comparing to the point of truth data for Site 1, overall the BATNAS 
DATA best replicates it based on 2318 points analysis. The Points Volume Metric of 24.1% and 
RMSE of 2.951. However, based on MBE of -0.108 the SENTINEL-2 DATA is preferred. On the 
basis of the 3D surface volume analysis its suggests BATNAS the best overall candidate with 
SENTINEL-2 preferred for very shallow water (< 5m depth). 

Figure 17. Comparison of water volume over sea bed surface Site 1 
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      For Site 2, the Points Volume Metric suggest DEMNAS at 15.9%, which also coincides with 
the MBE of -1.104. The RMSE of 3.026 and MAE of 2.173 prefers the FABDEM data set. 
Reviewing the terrain based on 3D surface volume identifies the DEMNAS DATA as the best 
candidate to replicate the SURVEY. 

3C. Tsunami Models 

The ANUGA HYDRO MODEL has been set up and run for all of the scenarios described (Figure 
20 & 21). The ANUGA HYDRO model produces a single output file (*.SWW) which contains the 
full time history of conserved quantities (Elevation, Stage, Momentum X and Momentum Y). As it 
is a finite volume model velocity is not a conserved quantity in the model.  
 
      Velocity is derived from Momentum as {V = M/Depth}, where;  
M = Sqrt (MomX x MomX + MomY x MomY) 
Depth is Stage(Water Elevation) minus  Bed Elevation.  
This is important as in some model applications such as erosion the elevation can change. For all 
models since the focus is on the influence of terrain data change, the adopted values of surface 
roughness are not considered particularly important. For all model runs Manning’s N is set at 0.035. 
      Site 1 has four (4) models with only Bathymetric data being changed between models.  The 
mesh for all models was set at (10x10m) {100m2} cells. 
      Site 2 has three (3) models with only the terrain data being changed between models.  
In addition a further model was set up to test the sensitivity of results to the mesh refinement. The 
mesh for all models was set at (10x10m) {100m2} cells, except for the refined models which used 
(5x5m) {25m2}. The Models have been run for 1 hour (3600 seconds in the models). 
 
      In addition any surface can be extracted and viewed in QGIS, or exported to any other GIS 
platform. Further for any location within the models it is possible to extract the conserved quantities 
and from those derive many other quantities such as: 
 
- Depth 
- Velocity 
- bed Shear (VxVxD) 
- Froude 
- Specific Energy (VxV/2g) 
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Figure 18. Site 1 Tsunami Model Extent Figure 19. Site 2 Tsunami Model Extent 
 
Data is to be extracted at Gauge locations for each site as indicated in (Figure 22 & 23). 
 

  
Figure 20. Site 1 Gauge Locations Figure 21. Site 2 Gauge Locations 

 
      The models were run as described and data extracted as both time series and as a surface of 
maximum momentum (Hazard). For Site 1 the four models (Figure 24-27) produce the maximum 
momentum plots as shown and these can be used to look into the difference of hazard resulting 
from the difference in input data for each of the models. 
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Figure 22.   Max Hazard Sonar Figure 23.   Max Hazard GEBCO 

 
       Visually the Gebco model is immediately different. The BATNAS and Sentinel based models 
are far more similar to the SONAR model, but clearly not identical. 

  

Figure 24.  Max Hazard BATNAS Figure 25.   Max Hazard Sentinel 
 

      The differences (Figure 28) in the model results can be visually indicated by creating a 
difference plot of results of each of the models compared to the SONAR model results. 
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Difference Sonar-Gebco Difference Sonar-Batnas Difference Sonar-Sent 

Figure 26.   Comparison of Max Hazard Differences for Site 1 models 
 
      To drill into more detail time series at the gauge points will be explored further. 
The Hazard is defined from Velocity times Depth (Momentum).  
The maximum hazard can therefore be plotted spatially for each of the models as for site 1. 
 
For Site 2 the following plots show the maximum momentum (Hazard) for the 3 models (Figure 29-
31)  run and the difference plots again indicate the resulting variations only as a result of changing 
the input terrain data. 

   
Figure 27.   Max Hazard 

Survey 
Figure 28.   Max Hazard 

Demnas 
Figure 41.   Max Hazard 
Fabdem 

 
Once again the very obvious difference (Figure 32) here is the Fabdem data set results. Looking at 
the difference between model results also identifies the extent of differences. 

  
Difference Survey-Demnas Difference Survey-Fabdem 
Figure 29.    Comparison of Max Hazard Differences for Site 2 models 
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      Once again further details can be extracted from time series behaviour over the entire 
simulation. 
 

3D. Extracting and comparing Time Series Data 

For site 1 there are 10 locations where gauge data has been extracted the following time series plots 
are an example of those extracted (Figure 33). Site 2 has similar plots for all its gauge points. 

  
 
 

 
 

Figure 30.  Time Series 4 models at Site 1: Location Jl Pantai Keramas End 
 

The difference plots show the variation between the point of truth model (SONAR) compared to the 
other data models (GEBCO, BATNAS, SENTINEL). Hence, for Site 1 at each location there are 
three (3) difference plots (Figure 33-36) . The difference plots statistics have also been accumulated 
and will be presented here as a form of summary and to draw conclusions.  A critically important 
aspect to be aware of in the nature of tsunami analysis is that of the reflective wave, or the 
retreating wave on land. The difference at times can be more pronounced in the retreating phase 
than in the initial wave attack. This is clear in the example shown in the following figures. 
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Figure 31.  Site 1 Location Jl. Pantai Keramas End Difference SONAR minus GEBCO 
 

 
Figure 32.  Site 1 Location Jl. Pantai Keramas End Difference SONAR minus BATNAS 
 

 
Figure 33.  Site 1 Location Jl. Pantai Keramas End Difference SONAR minus SENTINEL 
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      For the 10 Gauge Locations in 3 comparison models at Site 1 the R-squared terms show that for 
the Bathymetric data changes (only) the impact the surface water elevation (Stage) the least in the 
SENTINEL model compared to the point of truth SONAR model. Similarly Momentum is best 
replicated in the SENTINEL model when compared to the point of truth SONAR model. For Bed 
Shear and a newly considered hazard measure based on pressure, the BATNAS model best 
replicates the point of truth SONAR model. 

      For the 11 Gauge Locations in 2 comparison models at Site 2 the R-squared terms show that for 
the terrain changes (only) the impact on all terms, (Stage, Total Momentum, Bed Shear and the 
Pressure Hazard term considered), the best model to replicate the point of truth SURVEY model is 
the DEMNAS based model. 

 

SITE 1: 
SONAR - GEBCO 

Stage 0.9084336 
TotM 0.7677961 

BedShear 0.7769386 
NewHaz 0.8781592 

 
SONAR - BATNAS 

Stage 0.9987725 
TotM 0.9922413 

BedShear 0.9727753 
NewHaz 0.9908819 

 
SONAR - SENTINEL-2 

Stage 0.9996891 
TotM 0.9926519 

BedShear 0.9726684 
NewHaz 0.9818269 

SITE 2: Mesh 100 
SURVEY - FABDEM 

Stage 0.9999042 
TotM 0.9988720 

BedShear 0.9992434 
NewHaz 0.9992782 

 
SURVEY - DEMNAS 

Stage 0.9999943 
TotM 0.9999616 

BedShear 0.9999540 
NewHaz 0.9999559 

 
SITE 2: Mesh 25 (Refined) 

SURVEY – DEMNAS Run1 
SURVEY – DEMNAS Run2 

Stage 0.9999854 
TotM 0.9999705 

BedShear 0.9999627 
NewHaz 0.9999642 

Table 1  R-Squared Terms for Site 1 and Site 2 
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      The other METRICS considered for the OUTPUT results included RMSE, MAE and MBE as 
follows: 

SITE 1: 
Demnas_Batnas_Sonar_Wave_10_p25 - Demnas_Gebco_Wave_5_p25 
     Stage RMSE: 2.197 MAE: 1.629 MBE: 0.368 
      TotM RMSE: 12.728 MAE: 8.935 MBE: 4.213 
  BedShear RMSE: 35.566 MAE: 20.897 MBE: -0.060 
    NewHaz RMSE: 91.825 MAE: 83.827 MBE: 83.343 
  
Demnas_Batnas_Sonar_Wave_10_p25 - Demnas_Batnas_Wave_10_p25 
     Stage RMSE: 0.252 MAE: 0.132 MBE: 0.053 
      TotM RMSE: 3.257 MAE: 2.171 MBE: 1.920 
  BedShear RMSE: 12.381 MAE: 4.442 MBE: -1.237 
    NewHaz RMSE: 44.880 MAE: 43.628 MBE: 43.628 
  
Demnas_Batnas_Sonar_Wave_10_p25 - 
Demnas_Batnas_Sent2_Wave_10_p25 
     Stage RMSE: 0.127 MAE: 0.059 MBE: 0.017 
      TotM RMSE: 2.616 MAE: 1.385 MBE: 1.218 
  BedShear RMSE: 18.781 MAE: 7.006 MBE: -4.363 
   NewHaz RMSE: 41.685 MAE: 40.994 MBE: 38.013  

COMMENTS: 
Site 1. Bathymetric Data Change 
In running multiple models and 
only adjusting the Bathymetric data 
it was found that the Closest 
estimate to the SONAR data was as 
a result of the Sentinel-2 DATA 
with  RMSE result for Stage, Total 
Momentum (VxD) and a New 
Hazard Term. However, the best 
RMSE result for BedShear was the 
BATNAS data. 
 
The same result was clear in the R-
squared term also. 

 Table 2 OUTPUT METRICS for Site 1 
 

SITE 2: 
BatNas_DemNas_SURV_Wave_10_p25 - 
BatNas_FabDem_Wave_10_p25 
     Stage RMSE: 0.018 MAE: 0.006 MBE: 0.002 
      TotM RMSE: 2.571 MAE: 1.941 MBE: -1.160 
  BedShear RMSE: 8.941 MAE: 6.103 MBE: -5.356 
    NewHaz RMSE: 8.888 MAE: 6.082 MBE: -5.332 
  
BatNas_DemNas_SURV_Wave_10_p25 - 
Batnas_Demnas_Wave_10_p25 
     Stage RMSE: 0.004 MAE: 0.002 MBE: 0.001 
      TotM RMSE: 0.426 MAE: 0.313 MBE: -0.097 
  BedShear RMSE: 1.816 MAE: 1.177 MBE: -0.491 
    NewHaz RMSE: 1.805 MAE: 1.164 MBE: -0.481 
  
SITE 2: REFINED: 
BatNas_DemNas_SURV_Wave_10_M25 - 
Batnas_Demnas_Wave_10_M25 
     Stage RMSE: 0.007 MAE: 0.003 MBE: -0.000 
      TotM RMSE: 0.364 MAE: 0.187 MBE: 0.001 
  BedShear RMSE: 1.743 MAE: 0.843 MBE: -0.077 
    NewHaz RMSE: 1.741 MAE: 0.841 MBE: -0.077 

COMMENTS: 
 
 Site 2: Terrain Data Change 
 
In running multiple models and 
only adjusting the terrain it was 
found that the DEMNAS data 
provided the closest estimate to 
GROUND SURVEY for all terms 
likely to be related to hazard. 
The same result was shown in the 
R-squared term 

 Table 3  OUTPUT METRICS for Site 2 
 

These results have been plotted in simple graphs showing the input metric change against the output 
metric change, providing a measure of sensitivity (dy/dx). For site 1 input MBE the Output MBE has a 
sensitivity is 0.5. For site 2 the sensitivity is 1.85 as shown (Figure 37-38). 
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Figure 34.  Site 1 RESULTS 
 

Plotting input data and output data variability, indicates sensitivity to change. 

Figure 35.  Site 2 RESULTS  
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4. CONCLUSIONS 

For this body of work the objective was to identify the influence of data quality on the resulting 
determination of hazard for tsunami analysis. The conclusion clearly identifies better candidate 
metrics for inputs and results that link input data quality to output data quality. The broader 
objectives were to at least discuss the use of a framework, and to discuss how hazard is defined.  

The following can be concluded: 
1. The model topographic input data has a great influence on model results. 
2. Input data quality has been shown to influence resulting outputs that define tsunami 

hazard. 
3. Input data can be systematically reviewed by the inclusion of data metrics to compare data 

sets. The input metrics 3D surface volume , Points Volume Metric and Mean Bias Error 
(MBE) appear to perform better than Root Mean Square Error in identifying candidates for 
best input model DEMS. 
a. For Site 1 Identifying BATNAS as the best general candidate and SENTINEL-2 in 

the shallower water (<5m depth) to replicate the SONAR model. For Bathymtric 
DATA, the model results compared from each of the models for the sites suggests 
R-Squared performs well to identify a split between BATNAS and SENTINEL-2 
whilst RMSE, MAE and MBE select SENTINEL-2 for Stage, Total Momentum, 
and the suggested new Pressure hazard term whilst identify BATNAS to perform 
best for Bed Shear in replicating the point of truth SONAR model. 

b. For Site 2 Identifying DEMNAS is the best general candidate to replicate the 
SURVEY model as land based terrain. For Terrain DATA, the model results 
compared from each of the models for the sites suggests R-Squared, RMSE, MAE 
and MBE, each identified the DEMNAS model to perform best for Stage, Total 
Momentum, Bed Shear and the suggested new Pressure hazard term in replicating 
the point of truth SURVEY model. 

4. It was shown that momentum (current approach to hazard) is sensitive to changes in input 
data. Even though the extent of measure (range) was limited, the best consistent metric 
was MBE as compare to RMSE and MAE. 

5. The better spread of values from a Pressure based term may be a better candidate for 
describing hazard compared to the current globally adopted Momentum based term. This 
made measuring sensitivity more pronounced. 

6. Through the extent of work undertaken in relation to the findings presented, it is likely that 
a framework based approach would stream line many aspects of similar future ventures in 
tsunami analysis. 
 
In terms of real life adoption and application, the following can be suggested. The need to 
update time consuming, expensive tsunami modelling requires a specific trigger. One trigger 
being the availability of updated and improved data. The identification of the level of 
improvement of new data sets can be estimated through the processes utilised in this thesis, 
whereby an improvement metric in output can be estimated from the improvement metric in 
input. 
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